42 research outputs found

    Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves

    Get PDF
    We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second and third harmonic voltage response non locally, the model is experimentally examined. The results indicate that the combination of Peltier and Seebeck effects contributes significantly to the nonlocal baseline resistance. Moreover, we found that the second and third harmonic response signals can be attributed to Joule heating and temperature dependencies of both Seebeck coefficient and resistivity.Comment: 4 pages, 4 figure

    Cooling and heating with electron spins: Observation of the spin Peltier effect

    Get PDF
    The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. Connecting two materials with different Peltier coefficients causes a net heat flow towards or away from the interface, resulting in cooling or heating at the interface - the Peltier effect. Spintronics describes the transport of charge and angular momentum by making use of separate spin-up and spin-down channels. Recently, the merger of thermoelectricity with spintronics has given rise to a novel and rich research field named spin caloritronics. Here, we report the first direct experimental observation of refrigeration/heating driven by a spin current, a new spin thermoelectric effect which we call the spin Peltier effect. The heat flow is generated by the spin dependency of the Peltier coefficient inside the ferromagnetic material. We explored the effect in a specifically designed spin valve pillar structure by measuring the temperature using an electrically isolated thermocouple. The difference in heat flow between the two magnetic configurations leads to a change in temperature. With the help of 3-D finite element modeling, we extracted permalloy spin Peltier coefficients in the range of -0.9 to -1.3 mV. These results enable magnetic control of heat flow and provide new functionality for future spintronic devices

    Thermoelectric Detection of Ferromagnetic Resonance of a Nanoscale Ferromagnet

    Get PDF
    We present thermoelectric measurements of the heat dissipated due to ferromagnetic resonance of a Permalloy strip. A microwave magnetic field, produced by an on-chip coplanar strip waveguide, is used to drive the magnetization precession. The generated heat is detected via Seebeck measurements on a thermocouple connected to the ferromagnet. The observed resonance peak shape is in agreement with the Landau-Lifshitz-Gilbert equation and is compared with thermoelectric finite-element modeling. Unlike other methods, this technique is not restricted to electrically conductive media and is therefore also applicable to for instance ferromagnetic insulators

    Suppressed spin dephasing for 2D and bulk electrons in GaAs wires due to engineered cancellation of spin-orbit interaction terms

    Get PDF
    We report a study of suppressed spin dephasing for quasi-one-dimensional electron ensembles in wires etched into a GaAs/AlGaAs heterojunction system. Time-resolved Kerr-rotation measurements show a suppression that is most pronounced for wires along the [110] crystal direction. This is the fingerprint of a suppression that is enhanced due to a strong anisotropy in spin-orbit fields that can occur when the Rashba and Dresselhaus contributions are engineered to cancel each other. A surprising observation is that this mechanisms for suppressing spin dephasing is not only effective for electrons in the heterojunction quantum well, but also for electrons in a deeper bulk layer.Comment: 5 pages, 3 figure

    Optical probing of spin dynamics of two-dimensional and bulk electrons in a GaAs/AlGaAs heterojunction system

    Get PDF
    We present time-resolved Kerr rotation measurements of electron spin dynamics in a GaAs/AlGaAs heterojunction system that contains a high-mobility two-dimensional electron gas (2DEG). Due to the complex layer structure of this material the Kerr rotation signals contain information from electron spins in three different layers: the 2DEG layer, a GaAs epilayer in the heterostructure, and the underlying GaAs substrate. The 2DEG electrons can be observed at low pump intensities, using that they have a less negative g-factor than electrons in bulk GaAs regions. At high pump intensities, the Kerr signals from the GaAs epilayer and the substrate can be distinguished when using a barrier between the two layers that blocks intermixing of the two electron populations. This allows for stronger pumping of the epilayer, which results in a shift of the effective g-factor. Thus, three populations can be distinguished using differences in g-factor. We support this interpretation by studying how the spin dynamics of each population has its unique dependence on temperature, and how they correlate with time-resolved reflectance signals.Comment: 14 pages, 7 figure

    Seebeck Effect in Magnetic Tunnel Junctions

    Full text link
    Creating temperature gradients in magnetic nanostructures has resulted in a new research direction, i.e., the combination of magneto- and thermoelectric effects. Here, we demonstrate the observation of one important effect of this class: the magneto-Seebeck effect. It is observed when a magnetic configuration changes the charge based Seebeck coefficient. In particular, the Seebeck coefficient changes during the transition from a parallel to an antiparallel magnetic configuration in a tunnel junction. In that respect, it is the analog to the tunneling magnetoresistance. The Seebeck coefficients in parallel and antiparallel configuration are in the order of the voltages known from the charge-Seebeck effect. The size and sign of the effect can be controlled by the composition of the electrodes' atomic layers adjacent to the barrier and the temperature. Experimentally, we realized 8.8 % magneto-Seebeck effect, which results from a voltage change of about -8.7 {\mu}V/K from the antiparallel to the parallel direction close to the predicted value of -12.1 {\mu}V/K.Comment: 16 pages, 7 figures, 2 table

    Thermally driven spin injection from a ferromagnet into a non-magnetic metal

    Get PDF
    Creating, manipulating and detecting spin polarized carriers are the key elements of spin based electronics. Most practical devices use a perpendicular geometry in which the spin currents, describing the transport of spin angular momentum, are accompanied by charge currents. In recent years, new sources of pure spin currents, i.e., without charge currents, have been demonstrated and applied. In this paper, we demonstrate a conceptually new source of pure spin current driven by the flow of heat across a ferromagnetic/non-magnetic metal (FM/NM) interface. This spin current is generated because the Seebeck coefficient, which describes the generation of a voltage as a result of a temperature gradient, is spin dependent in a ferromagnet. For a detailed study of this new source of spins, it is measured in a non-local lateral geometry. We developed a 3D model that describes the heat, charge and spin transport in this geometry which allows us to quantify this process. We obtain a spin Seebeck coefficient for Permalloy of -3.8 microvolt/Kelvin demonstrating that thermally driven spin injection is a feasible alternative for electrical spin injection in, for example, spin transfer torque experiments

    Thermoelectric spin voltage in graphene

    Get PDF
    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents. Amongst the most intriguing phenomena is the spin Seebeck effect, in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect. Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport, energy-dependent carrier mobility and unique density of states. Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current. These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres

    Acoustic spin pumping as the origin of the long-range spin Seebeck effect

    Full text link
    The spin Seebeck effect (SSE) is known as the generation of 'spin voltage' in a magnet as a result of a temperature gradient. Spin voltage stands for the potential for spins, which drives a spin current. The SSE is of crucial importance in spintronics and energy-conversion technology, since it enables simple and versatile generation of spin currents from heat. The SSE has been observed in a variety of materials ranging from magnetic metals and semiconductors to magnetic insulators. However, the mechanism, the long-range nature, of the SSE in metals is still to be clarified. Here we found that, using a Ni81Fe19/Pt bilayer wire on an insulating sapphire plate, the long-range spin voltage induced by the SSE in magnetic metals is due to phonons. Under a temperature gradient in the sapphire, surprisingly, the voltage generated in the Pt layer is shown to reflect the wire position, although the wire is isolated both electrically and magnetically. This non-local voltage is direct evidence that the SSE is attributed to the coupling of spins and phonons. We demonstrate this coupling by directly injecting sound waves, which realizes the acoustic spin pumping. Our finding opens the door to "acoustic spintronics" in which phonons are exploited for constructing spin-based devices.Comment: 18 pages, 6 figure
    corecore